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Imperfections in Hexagonal Cobalt* 
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The influence of local strain, fine particle size, and stacking faults on the diffraction pattern of 
hexagonal cobalt have been considered. Quantitative X-ray measurements showed tha t  hexagonal 
cobalt produced by transformation was relatively free of local strain and particle-size effects, but  
both growth and deformation faults were observed. I t  was also found tha t  this hexagonal structure 
was composed of two types of material:  one region contained random deformation faults; the 
other region contained both random deformation and growth faults. The relative fraction of the 
two materials was measured but the distribution of these two types of materials could not be 
determined. Cobalt specimens which were highly deformed and subsequently annealed without 
transformation contained a homogeneous distribution of random growth and deformation faults. 
I t  was also shown that  extended dislocations would produce X-ray diffraction effects which were 
not observed. 

1. Introduction 

Hexagonal  cobalt  is formed from f.c.c, cobalt  by  a 
t ransformat ion  which is martensi t ic  on cooling below 
a t empera tu re  of about  390 ° C. The work of Edwards  
& Lipson (1942) and Wilson (1942) clearly demon- 
s t ra ted  the presence of s tacking faults  in hexagonal  
cobalt.  I t  was la ter  suggested (Christian, 1954; 
A n a n t h a r a m a n  & Christian, 1956) t ha t  two types  of 
s tacking faul ts  can be formed, a growth faul t  and a 
deformat ion fault .  The la t ter  defect was not  considered 
in the  earlier work, and Christian carried out the dif- 
f ract ion calculations for this effect. Gevers (1954) has 
t rea ted  the  more general case in which both types  of 
s tacking faul ts  occur. 

A number  of open questions remain on the  faul ted 
cobalt  s t ructure,  and this s tudy  a t t empts  to answer 
some of them.  The general diffraction problem for 
hexagonal  mater ia ls  wherein effects arising f rom 
localized strains, fine particle size, and stacking faul ts  
of both kinds, is invest igated by  extcnding War ren ' s  
t r e a tmen t  of cold work (1955). The question of the 
randomness  of the s tacking faul ts  is also considered 
The diffraction effects arising from the presence of 
extended dislocations is t rea ted  by  considering the  
s tacking sequence of cells a r ranged in columns. Within  
each column some cells do not  follow the normal  se- 
quence because of the presence of a s tacking fault ,  
whereas a column which does not  intercept  the  ex- 
tended dislocation has a normal  sequence and  this 
allows the  calculation of the  effects arising from an 
extended dislocation. 

Quant i ta t ive  line-shape determinat ions  were made  
on several cobalt  specimens, and the application of the 
diffraction analysis permi t ted  quite definite con- 
clusions with respect to the  types,  distribution, and  
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fract ion of defects present  under  specified conditions 
in hexagonal  cobalt. 

2. Diffraction theory 

For  a perfect hexagonal  mater ia l  the  relat ive atomic 
positions can be described by the vector  

R,n = (nl+Xn3)al+ (ng+ Y~)a2+naa a , (1) 

where al, a2, and a a (which is equal to ½c) are hex- 
agonal axes;  nl, ne and nz are integers;  Xn3 and  ]z.~ 
are definite fract ions which describe the  s tacking 
sequence of close-packed planes along a a. In  the more 
general case, in which imperfections are present,  the  
s tacking sequence is in ter rupted  by  mistakes,  and  
a toms are fur ther  displaced by internal  strains. Conse- 
quently,  the  fractions Xn 3 and  Y~3 must  be generalized 
to include the  possibility of finding layer cells in the  
wrong sequence and also to include the effect of local 
distortions. In  addition, a s t ra in  component,  Zn, 
parallel  to a a must  be included, i.e. 

Rm-Rm,  = (Xn+nl)al+ (Yn+n2)a2+ (Z~+na)aa, (2) 

where n is an abbrevia t ion for (nln2na) since the  
displacements must  have a three-dimensional  depen- 
dence. Subst i tu t ing this into the intensi ty  expression 

I = Ie f22 ,  " 2~' exp 2~iH. (Rm-Rm,) ,  (3) 
m m" 

where, H = hlbl+h2b2+hab 3, and bl, b2, b a are re- 
ciprocal vectors to a~, a 2, a a respectively, we obtain 

I = Ie f  2_.~ ~Y, Z exp 27dH. (5~ 
n l  n2 n3 

× exp 2ni (n lh l+n2h2+naha)  (4) 

with ~n = Xnal+ Yna2+Znaa, and the summat ions  are 
t aken  over all a tom pairs. For  each lat t ice vector  
having  components  (nln~nz), there is an  associated 
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sum of exponential terms formed by considering the 
individual displacements of all ( m - r e ' )  atom pairs. 
The summation can be written in terms of an average 
exponential and the total  number of such terms, N~, 
i.e. 

I = I~ f  ~ ~ .2," ~ N,~ (exp 2 ~ i H .  ~n) 
n l  rig. n 3 

× exp 27d(nlh~+n~h~.+naha) . (5) 

I t  will be assumed that  the reflections are sharp 
enough such that  h~ = h, h e = k, and h a = 1 in the 
averaging. 

The total  diffracted power from a reflection is given 
by 

f P -  4Va ~ s~nodh~dh~dha'  (6) 

where I is the intensity per crystal, M is the number 
of diffracting crystals, j is the multiplicity, R is the 
specimen-to-receiver distance, 2 is the wavelength, 
and V~ is the volume of the unit cell. The required 
integrations cannot be carried out conveniently with 
the present system of axes. I t  has been shown by 
Warren (1955) tha t  a general system of axes can be 
transformed by a suitable matrix transformation to 
give a new set with two of the three axes parallel to 
the reflecting sphere. Using this set, it is possible to 
obtain an expression for a powder pattern. Let  
b~, be, ba represent the rotated set; a~, a~, aa the cor- 
responding crystalline set. Making these substitutions 
gives the result 

= An,  A,, ,  
n 3 

× exp 2~i(n~h~+n'eh'~+n~h~)dh~ dh., dha (7) 
where 

K = I~f2MNjR22a/4V~ sin 0,* 
N = total  number of atoms per crystal, 
A~, = N~./N,  
A n, = (exp 2 ~ i H .  ~,~,} 

and h'l', h'9' refer to distances from the points of re- 
t t flection in reciprocal space in units of bl, b 2. Integrat- 

ing over all contributions to the Bragg reflection with 
respect to h~' and h'2' from - w  to +w gives 

r t 

P K I Z Z, Z e sin ~ n l w  sin Y ~ n 2 w  = An,An, -, , 
n~ n z n.~ 7~nl X~n2 

• t t t 

× exp2mn3hadha. (8) 
The two sums of the form 

t 
sin ~n~ w y ,  

t t are significant mainly at n~ = n.,. = 0. Therefore, 

f • ! t v P = K V A P A  , e x p 2 m n a h a d h  3 . (9) 
t n 3  n 3  

n 3 

* sin 0 can be taken as a constant for a given reflection. 

The equation 
cos 0 

dh~ = l a ~ [ - - ~  d(20) 0o) 

provides the change in variable for the total  power 
density in terms of 20. Dividing by 2~R sin 20 gives 
the final form in terms of the diffracted power per unit 
arc length and angular increment, i.e. 

P'(20) = K ' . ~  AP, A , exp 2~in~h~ (11) 
n ~  ~ 3  n 3 

with 
K '  = M N j R 2 e  f~a~I~/16gV~ sin ~ O . 

The term A~  contains both strain and stacking co- 
ordinates. In taking this average, it is simpler to think 
of the product (H. (~)  in terms of the untransformed 
axes but with a vector separation n~a~ between cells. 
The averages are taken with respect to the cells in 
each column taken separa, tely and not from one column 
to another, since n~ = n., = 0. 

3. I n t e rp r e t a t i on  of F o u r i e r  c o e f f i c i e n t s  

The Fourier coefficients in (11) appear as a product 
of a particle-size coefficient and a coefficient involving 
both the stacking and distortion coordinates. The lat- 
ter is not in the most convenient form and will be 
considered in greater detail. 

For a perfect hexagonal sequence (A B .4 B A type), 
the stacking coordinates take values" 

(Xh., Yk, Zk) = (0, 0, 0), if k corresponds to an even 
layer 

= (±§, ±½, 0), if k corresponds to an odd 
layer. 

In the latter case, the sign depends upon whether the 
reference layer is an .4 or B. For  an [h/c0] direction 
all cells are of a (0 ,0 ,0)  type and none is in 
(±~-, ±½, 0) positions, since no extended dislocation 
patches are present in the perfect material. 

We now consider the case in which extended dis- 
locations are scattered throughout the material. In 
this case, the strain terms x~., Yk, and zk should also 
be included. In addition, it is possible to find all 
three types of stacking displacements for any (hk l }  
direction including (hkO}, i.e. 

(Xk, Yk, Zk) = (xk, Yk, z~.) (A) 

= (§+x~., ½+Yk, zk) (B) 
- ( - ~ + x ~ . ,  1 - - ~ + Y k ,  z~.) . (C)  

The calculations are greatly simplified if the strain 
coordinates are assumed to be independent of the 
stacking coordinates. This is a reasonable assumption 
provided the strain centers are not associated with 
the stacking faults, and a certain fraction of the strain 
centers are probably of this type. If the faulted cells 
result from extended dislocations in the usual sense, 
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then each partial  dislocation associated with an ex- 
tended dislocation is a strain center. Consequently, 
it does not seem justified to assume the strain centers 
to be entirely independent of the stacking coordinates. 
However, it should be recognized tha t  each of the 
partial dislocation cores represents a discontinuity 
between a faulted region and an mffaulted region, 
and tha t  each region is strained by the partial. On 
this basis, the strain term for both a faulted and its 
adjacent unfaulted region should not be significantly 
different in magnitude. Consequently, the same strain 
term will be used irrespective of the stacking coor- 
dinate. 

Stacking and strain probabilities are defined in the 
following manner" P°n~, P+n3 and P-,n.~ are the prob- 

abilities for finding the relative translations (0, 0, 0), 
(§, ~,1 0), and (_~.,2 _13, 0) respectively at a separation 
of n~a~. The quant i ty  P,gdxdydz represents the prob- 
ability of finding a strain between x, y, z and x+dx, 
y+dy, z+dz at a spacing n~a~. Taking the average 
with respect to these definitions" 

(exp 2~iH. (Sn~ } 

= ~po,+p+ exp 27ri(~h+½k)+P~ exp -2Jri(-~h+½k)} 
n3 n3 

(I2) 

_- {p0,~ + p +  exp 2~i(-~h+½k)+P~ exp -2zi(.~h+½k)} 

(exp 2zi(x~,h+y,k+z,1)_~ -3 } .  (13) 

Let As,F = pc, + p +  
n3 n3 n 3 

× exp 2~i(~h+~k) 

and 
A~ = (exp 2zi(x ,h+y ,k+z ,o3 -3 

For reflections of the type h - k  = 3t (t = integer), 

As'F,3 -~ 1.00 since po,+p++p-~n3 ~'3 = 1"00. 

For  h - k  = 3t± 1, we obtain 

AsF (~.~P,~° --I~+i½V3(P~--P~.j)2, . (14) 

Reflections of this type are affected by the stacking 
sequence for all values of l, including 1 = 0. Thus, 
only certain lines are broadened by the presence of 
extended dislocations in hexagonal materials, and a 
discontinuous line broadening for reflections of the 
type (hkO) where h - k  = 3 t+ l  has not been predicted 
previously. I t  results from the mistakes within in- 
dividual close-packed layers. The effect is, of course, 
proportional to the average number of extended dis- 
location patches within a layer. If the patches are 
large and widely spaced, the broadening is small. 

Substi tuting the results of this section into equation 
(11) gives 

t . t ¢ P(2o) = K'..~, AP, ASF, A~, exp 2ran3h~ . (15) 
t t~3 ~ 3  n 3  

This represents a Fourier series involving the product 
of three coefficients, each characteristic of one defect, 
i.e. particle size, faulted cells, and strains. A line 
broadening will be observed if any one of these co- 
efficients decreases with increasing n~. I t  is possible 
in principle to separate these coefficients by making 
use of an extrapolation method (Warren & Averbach, 
1952). If one considers reflections of the type h-k=3t ,  
then AS, F -- 1.00 and the above mentioned method 

n3 

can be used directly. I t  does not seem practical to 
employ such methods for the separation of AS, P. A n3 
A more practical procedure is to assume a model for 
the particle-shape and strain distribution on the basis 
of the measurements obtained from reflections which 
are unaffected by stacking faults, and thereby obtain 
information concerning the stacking sequence. The 
final procedure must  be adapted to the specific prob- 
lem. 

4. The powder pattern for transformed and 
annealed cobalt 

Diffraction line shapes from 99.99 % cobalt specimens 
were measured quantitatively.  Powder briquettes were 
prepared by grinding solid cobalt with an alundum 
wheel; the cobalt was separated with a magnet.  
Briquettes were pressed and the specimen was an- 
nealed at 300 ° C. for 7 days and at 390 ° C. for 2 days. 
Mte r  this t rea tment  the structure was entirely hex- 
agonal. Detailed diffraction-line shapes were observed 
with a Geiger-counter spectrometer, using filtered 
Fe Ka radiation. The sample was then heated quickly 
into the f.c.c, region (600 ° C.) and ice-quenched. In 
both cases it was found tha t  lines of the type (00l) 
and (hkO) were sharp, with the Kal, .Ka2 doublet 
resolved at  high Bragg angles. Since both strain and 
particle-size broadening increase with (20) (as 1/cosO 
and tan 0 respectively), it would be expected tha t  if 
either were present the high-angle lines should be 
broadened relative to the low-angle lines. This was 
not the case. Consequently, both strain and particle- 
size broadening could be neglected for these specimens. 
That  is, the particle size is greater than about 1000 A 
and the local strains are less than 1 × 10 -~. Therefore, 
A ~, = AP, s = 1.00. In addition, reflections of the type 

n 3 n3 

h - k  -- 3t+ 1 and / = 0 were not broadened relative to 
h - k  = 3t and 1 = 0. In the preceding section it was 
shown tha t  two types of broadening should exist if 
stacking faults exist as extended dislocations. Neither 
broadening was observed. Thus, extended dislocations 
of the usual form are not present, or are present in 
very small numbers. If the extended dislocations are 
composed of partial dislocations located at the bound- 
aries, then the volume strains are greatly reduced and 
the faults can be considered as entire misplaced planes. 

Under these conditions, further simplifications can 
be made. I t  is unnecessary to use the rotated axes 
in making the integrations for a powder pattern. The 
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integrations can be made along b 1 and b e from - w  
to + w  so as to include all the Bragg intensity in these 0.70 
directions at a given value of hab a. This approximate 
integration is adequate except for reflections of the 0.60 
type (hkO). The powder pat tern for all reflections 
except (hkO) can then be written as 0.50 

P(~o) = K ' Z ,  AsF~3 exp 2~ inah  a (16) 
na ,.0"40 

where h a = (2IaaJ/~t) (sin ~. 0 - s i n  e 0o)½, and 0o is the 
Bragg angle for (Md)). In all cases, it was possible to 0"30 
t a k e / ~ '  as a cons tan t .  Th is  enab led  the  o rd ina tes  of 
the pat tern  to be used directly after subtracting 0.20 
background. The Fourier coefficients of the (101), 
(102), and (103) are shown in Fig. 1 for the annealed 

0"10 

1.s : I l i I ] 

0"8 - \  ~"%.," x ~ --I 
_ \ o " - . , .  x 

o . 6 -  .%,..., 0o3) -I 

0"I I ~ 1 % 1  I I 
10 20 30 40 50 60 

n 3 

Fig. 1. Fourier coefficients. Sample ground at room tem- 
perature and annealed at 300 ° C. for 7 days and at 390 ° C. 
for 2 days .  

specimen corrected for instrumental broadening by 
using the Stokes method (1948) and Lipson-Beever 
strips. In each case, the peak maximum was taken as 
the origin. The true origin is at ha = 0, consequently 
the origin must be shifted to this value for the (101) 
and (103) reflections by multiplying each coefficient 
by ( -1 )  "3. No correction is necessary for the (102). 
One period along b a includes two reflections, either 
(101) and (102) or (102) and (103). Consequently the 
true periodicity along (hk) = (10) is 

K 1 and K~ can be evaluated from the initial conditions 
Pc = 1.00, P+ = PT = 0.50, and give the values K 1 = 
and K~ = ¼ if A~ ° = A 1° = 1.00. 

Thus, 
A~(10)  = a ( - l ~ n 3 A  0°1) °r(103)A-1A(102) (17) 

q b ~  ~ I  ~ F / ,  3 ~ 4 ~"L ~, 3 * 

Taking P +  = P~,  equation (14) becomes 

ASF-a = ½(3P°3 - 1 )  (18) 

i 
J I I I I 

( 2 ) ~ ~ _  

"f 

I I i I I 
0 I 0 20 30 40 50 60 

,3(eve~)  

Fig. 2. P robab i l i t y  of f inding a s tacking faul t  in t r ans fo rmed  
and  annealed  cobal t  powder .  

Consecut ive hea t  t r e a t m e n t s  for same sample:  (1) Ground  
a t  room t empe ra tu r e  and annealed  a t  300 ° C. for  7 days  
and a t  390 ° C. for 2 days ;  t r ans fo rmat ion  100% h.c.p.  
(2) As for (1) fol lowed b y  anneal  a t  600 ° C. for 15 rain. 
and ice quench;  t rans format ion  81% h.c.p. 

o r  
p c  3 ~ sF = (2A,3 +1) (18a) 

for odd values of n a. Since Pn°3 = 0 for the perfect 
material, equation (18a) represents the probability of 
finding a stacking fault at n a interlayer spacings. For 
even values of na, 

o~n3 = l - P %  e s s  = -a-(1-A,~ 3 ) (19) 

represents the probability of finding a stacking fault 
at ns interlayer spacings. These results give the 
statistical picture of faulting without assuming the 
stacking sequence to be random. Typical plots of an3 
are given in Fig. 2. 

Tests can be made on the data which permit one to 
obtain information concerning the distribution of 
stacking faults. If the Fourier coefficients of the 
separate lines follow the relation A,3 (hk l  ) = A 1 (hkl)'"3', 
then the distribution of faults can be considered as 
random (M@ring, 1949; Houska & Warren, 1954). 
Fig. 1 indicates that  this relation is satisfied for the 
(101) and (102) reflections. For the (103), the dis- 
crepancy at small values of nz results from the choice 
of background in making the Fourier analysis. Despite 
this, it is seen that  at large n 3 values the slope is very 
close to that  obtained from the (101), as is expected 
from theory. Since the plots are linear when back- 
ground is well determined, the distribution of faults 
can be taken as random. 

After having shown that  the stacking faults occur 
at  random, it is justifiable to make use of existing 
diffraction calculations which assume randomness. 
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The two defects which have been considered are 
represented schematically by  the following sequences: 

hex. hex. hex. hex. 

".A JB A B C B C B [A B A B C  A C A  C 

f.c.c, f.c.c. 
1 growth faul t  1 deformation faul t  

Let  o¢ represent the probabi l i ty  of finding a growth 
faul t  (i.e. three layers in the cubic sequence) and y 
represent  the probabi l i ty  of finding a deformation 
faul t  (i.e. the  probabi l i ty  of finding par t ia l  slip between 
consecutive layers). These probabilit ies refer s tr ict ly 
to a random distr ibution of defects and consequently 
differ from the set c~3, which are meaningful for any  
distr ibution of defects. In  the former case c¢ and 7 do 
not  va ry  with increasing in terplanar  spacing whereas 
c%3 increases. F rom (4) the coefficients for h -  k = 3t± 1 
can be wri t ten  as: 

l n A  ° = -(½c~+~y ) (hkl = odd) ,  (20) 

haAe~ = -(~0¢+~7 ) (hkl = even) .  (21) 

From the slopes of the semi-logarithmic plots of 

zl(~02) (A i ) I~ l  A0°1)~3 or (10a) = (A0)lnal and -~a = 

(see Fig. 1), ~ = 0.036 and 7 = 0.004. 
For  specimens of cobalt powder which were heated 

into the f.c.c, range and then t ransformed to hex- 
agonal mater ia l  by quenching, the preceding approach 
was not  s tr ict ly applicable. A semi-log plot of the 
Fourier  coefficients (Fig. 3) does not  give a single 
s t raight  line for the (102) reflection. Two st ra ight  line 
regions are apparent .  Exper imenta l ly  it  was observed 
tha t  the (102) line shape appeared as a superposit ion 
of a sharp line and a broad line. (This was also ob- 

1.5 -xN" t t l i I - -  

- \  
× 

1"0 X _ ~ x ~  x 0 (101) calculated - 

0"8 -X~k*~'.-- ~ x x ~  ~ (102)ca lcu la ted 

- % A,, o . , o r  _ 
_ o-,9x ~ x \  are experimental _ 

o.4"-. 

o . 3 -  N \x\ 

,\ \ \  
, 

n3 

Fig .  3. F o u r i e r  coe f f i c i en t s .  S a m e  s a m p l e  as  in  F ig .  1 b u t  
w i t h  a d d i t i o n a l  a n n e a l  a t  600 ° C. fo r  15 ra in .  a n d  ice q u e n c h ,  

served by  Edwards  & Lipson (1942).) This is consistent 
with the  two linear regions of the coefficient plot. 
The Fourier  coefficients can be explained by  consider- 
ing t ha t  the  hexagonal  s t ructure  contains two types  of 
mater ia l :  

1. One region contains only random deformation 
faults, 

2. The other region contains random deformation 
and growth faults.  

If  the  two regions are large, the  in tens i ty  can be ex- 
pressed by  the two series, i.e. 

f ~o) = .~v ( kl Ana..f_ kpA 'n'a) exp 2:zr, naha , 
n3 

where 
k l . q - k  2 - -  I, 
A~z = (A~)I~31 (for region of type  (1)), 
A',~ = (Ai') 1"31 (for region of type  (2)). 

For  1 odd we have 

In A~ = - ~7 (1) , 
ha A '1' = - ½c ~(2)- z a •(2), 

and for 1 even we have 

lnA~ = - ~ 7  (1), 

In A i' = - z a c~ ( z ) -  ~ 7 (2). 

The probabili t ies are defined as: 

~(1) is the  probabi l i ty  of finding a deformation faul t  
in mater ia l  (1), 

y(2) is the probabi l i ty  of finding a deformation faul t  
in mater ia l  (2), 

c~ (2) is the  probabi l i ty  of finding a growth fault  in 
mater ia l  (2). 

The following values were obtained by  curve-fi t t ing: 

7 (1) = 0.023, c~ (2) = 0.080, 7 (2) = 0.014, 
k 1 = 0 " 4 5 ,  k 2 = 0 . 5 5 .  

Fig. 3 i l lustrates t ha t  the  Fourier  coefficients are well 
represented by  the calculated points obtained by  
making use of the preceding values and assumptions.  

5 .  D i s c u s s i o n  

The generalized X- ray  t r ea tmen t  of the effects on the  
line shape of hexagonal  s tructures int roduced by  the 
presence of localized strains, particle-size and stacking 
faul ts  has shown tha t  these influences appear  in the 
Fourier  coefficients of a function which describes the 
line shape. These are difficult to separate in cases 
where all three effects are present,  and the experimen- 
ta l  work on cobalt  was confined to cases wherein the 
particle-size and local-strain effects were negligible. 
A s tudy  of the stacking-fault  coefficients, however, 
indicated t ha t  the  separate probabilit ies for finding 
deformation faults  and growth faults could be ob- 
served. 
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Two types of hexagonal cobalt structures were 
studied. In one case the specimen was partially trans- 
formed by cooling to room temperature and the re- 
mainder of the transformation to the hexagonal 
structure was carried out by deformation during the 
grinding of fine powders. The hexagonal cobalt was 
then annealed to relieve the local strains and to in- 
crease the particle size, and the resultant structure was 
analyzed for the presence of stacking faults. In the 
second type of experiment the hexagonal structure 
was reheated into the f.c.c, phase and quenched into 
ice water. The resultant structure was a mixture of 
hexagonal cobalt formed by transformation on cooling 
below the M,. temperature and retained f.c.c, structure. 

I t  has shown that  strain broadening and particle- 
size broadening could also be neglected in the case of 
the hexagonal structure formed on transformation. 
This indicates that  the average particle size in any 
direction is probably greater than 1000 A and the root 
mean square average strains are smaller than 1 × l 0  -3. 
Consequently, there are relatively small local distur- 
bances associated with the martensite transformation 
in this case. This is not unexpected since the trans- 
formation f.c.c. ~ hexagonal involves mainly a change 
in the stacking sequence and only very small adjust- 
ments in the lattice structure. I t  was also observed 
that  reflections of the type h - k  = 3t±l  and 1 4= 0 
were broadened, whereas all other reflections were 
sharp. The combined absence of the discontinuous 
broadening of (hie0) reflections and the absence of 
strain broadening indicate that  extended dislocations 
cannot be present in large quantities in these spec- 
imens unless the partial dislocations are contained in 
the boundaries of the sub-grains. The latter picture 
is identical to the case in which the faulted planes 
extend over the entire sub-grain. 

A general distribution of stacking faults was ob- 
tained in which the stacking-fault probability was 
found at various interlayer spacings. This distribution 
is a statistical representation of the distribution of 
stacking faults in the hexagonal phase of a cobalt 
powder. As it stands, it does not give directly the type 
of distribution present in the hexagonal phase. To 
obtain this, tests must be made directly upon this 
curve or upon the Fourier coefficients which describe 
the shape of the individual reflections. In the case of 

a random distribution of faults the Fourier coefficients 
take the form A,,,~ = A~ "31. This was found to be the 
case for the annealed hexagonal specimen. The prob- 
ability of finding a growth fault was 0.036 while the 
probability of finding a deformation fault was 0.004 

The distribution of faults for a hexagonal cobalt 
specimen formed by transformation on cooling is more 
complex. The simple exponential relationship between 
the Fourier coefficients of various orders was not found. 
A second term was required to fit the data and this 
can be interpreted as showing that  the transformed 
cobalt consists of two regions; one region contains 
only deformation faults, the other region contains 
both deformation and growth faults. The faults were 
randomly distributed in each material. The trans- 
formed cobalt contained about 50% of each type of 
material. The probability of finding a deformation 
fault in the first material was 0.023. The probability 
of finding a deformation fault in the second material 
was 0.014, but the probability of finding a growth 
fault in the second material was 0.080. This indicates 
that  growth faults are very prevalent, and these may 
be a consequence of the joining up of various sub- 
grains in the martensitic phase. The deformation 
faults are considerably less prevalent and these may 
be a consequence of the local deformation associated 
with the transformation. A later paper will deal more 
completely with the transformation characteristics. 
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